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My research interests are in extremal and probabilistic combinatorics. My work so far en-
compasses several different problems, all variations on the usual extremal combinatorics theme
of looking at the existence of certain substructures or properties of a family of combinatorial
objects (graphs, hypergraphs, automata) as the objects grow large. A particular pattern that
emerges from my work is a use of intricate constructions, which occur not only as counterexam-
ples, but are also used to show positively that various things are possible and as tools to bound
probabilities.

I was awarded a PIMS postdoctoral research fellowship to work at the University of Victoria
with Natasha Morrison and Jonathan Noel. Prior to this, I spent a year as a postdoctoral
research fellow at Toronto Metropolitan University (formerly Ryerson University) with the
Graphs at Ryerson group, including Pawe l Pra lat and Anthony Bonato. I completed my PhD
at Queen Mary University of London in 2020 under the supervision of Robert Johnson.

I am the sole author of two papers and I have co-authored a further seven papers with thirteen
different collaborators, including prominent researchers as well as other early-career researchers.
My network has expanded rapidly in a relatively short time. I have been invited to give a total
of twelve external seminar talks at ten different institutions and three conference talks, as well
as attending numerous conferences as a contributor. I have also attended four highly selective
workshops, either by invitation (Workshop on Graph Theory and Combinatorics in Thuringia,
Cross-community Collaborations in Combinatorics workshop) or by application (Graduate Re-
search Workshop in Combinatorics, Young Researchers in Combinatorics workshop).

1 Overview of Significant Research Contributions

My work so far encompasses several different problems under the broad umbrella of extremal
and probabilistic combinatorics. The different areas I have worked on are summarised briefly
below and then in more depth in the indicated subsections.

Subsection 1.1 Two Saturation Problems. Tuza’s famous conjecture on the saturation number
sat(F, n) states that for r-uniform hypergraphs F the value sat(F,n)

nr−1 converges.
I answered a question of Pikhurko concerning the asymptotics of the saturation
number for families of hypergraphs, proving in particular that sat(F ,n)

nr−1 need not
converge if F is a family of r-uniform hypergraphs. I, together with Johnston,
Letzter, Morrison and Ogden, also proved that the rainbow saturation number,
a natural generalization of the saturation number to edge-coloured graphs, is
linear. This answered a question of Girão, Lewis and Popielarz.

Subsection 1.2 1-factorizations of the Hypercube. The existence or non-existence of perfect 1-
factorizations has been studied for various families of graphs, with perhaps the
most famous open problem in the area being Kotzig’s conjecture which states
that the complete graph K2n has a perfect 1-factorization. I focused on another
well-studied family of graphs: the hypercubes Qd. I answered almost fully the
question of how close (in some particular sense) to perfect a 1-factorization of
the hypercube can be.
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Subsection 1.3 Subgraphs of Semi-random graphs. The semi-random graph process is a single-
player game. Starting with an empty graph on n vertices, in each round a vertex
u is presented at random and the player selects an edge uv to add to the graph.
In our work, the objective of the player is to construct with high probability
a subgraph isomorphic to a fixed graph H in as few rounds as possible. Trent
Marbach, Pawe l Pra lat and Andrzej Ruciński and I proved the conjecture that
asymptotically almost surely one can construct H in t rounds for any t ≫
n(d−1)/d, where d ≥ 2 is the degeneracy of H. We also generalized this to a
semi-random s-uniform hypergraph process.

Subsection 1.4 Černý’s Conjecture. An automaton on n states is synchronizing if there is a
word that maps all n states onto the same state. Černý’s conjecture on the
length of the shortest such word is probably the most famous open problem
in automata theory. With Robert Johnson, I considered the closely related
question of determining the minimum length of a word that maps k states onto
a single state. We found a simple combinatorial argument that improves the
upper bound on the minimum length of such a word, and improved the bound
even further in the case k = 4 or 5.

Subsection 1.5 Probabilistic Zero-forcing. Probabilistic zero-forcing is a model for rumour-
spreading across a network, where each vertex infects its neighbours with a
probability proportional to how many of its neighbours are already infected.
With Trent Marbach and Pawe l Pra lat, I studied the speed of propogation on
grids and hypercubes.

Subsection 1.6 Common Pairs of Graphs. A graph H is said to be common if the number of
monochromatic labelled copies of H in a red/blue edge colouring of a large com-
plete graph is asymptotically minimized by a random colouring with an equal
proportion of each colour. Natasha Morrison and Jonathan Noel and I extended
this notion to an asymmetric setting in a very natural way. That is, we define a
pair (H1, H2) of graphs to be (p, 1 − p)-common if a particular linear combina-
tion of the density of H1 in red and H2 in blue is asymptotically minimized by a
random colouring in which each edge is coloured red with probability p and blue
with probability 1 − p. We extended many of the results on common graphs
to this asymmetric setting and we obtained several novel results for common
pairs of graphs with no natural analogue in the symmetric setting, using tools
such as graph limits, convexity and flag algebras. There are many natural and
interesting open problems around this new definition.

1.1 Two Saturation Problems

For a fixed graph H we say that a graph G is H-saturated if it does not contain H as a subgraph,
but adding any extra edge creates a copy of H as a subgraph. The saturation number of H,
denoted by sat(n,H), is the minimum number of edges in an H-saturated graph G on n vertices.

The saturation number can be thought of as a sort of opposite to the Turán extremal number
ex(n,H) that counts the maximum number of edges in an H-free graph on n vertices. Since
a maximal H-free graph is H-saturated, ex(n,H) equivalently counts the maximum number
of edges in an H-saturated graph on n vertices. The saturation number in contrast counts
the minimum number of edges among such graphs and is an interesting counterpoint to the
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Turán number – the saturation number is in many ways less well-behaved. For example, we
know that the Turan density limn→∞ ex(F, n)/n2 exists. Kászonyi and Tuza [20] proved that
sat(n,H) = O(n) and Tuza [26] conjectured that sat(F, n)/n always tends to a limit as n tends
to infinity, but this conjecture is still open.

The definition of saturation extends naturally to families of graphs. Pikhurko [24] disproved
a strengthening of Tuza’s conjecture by finding a finite family F of graphs such that sat(F , n)/n
does not converge as n tends to infinity. Pikhurko then asked whether a similar behaviour can
occur for families of r-uniform hypergraphs.

I showed [3] that the answer to this question is yes. The proof is by construction of a family
F which grows in size with r. By adjusting this construction I also demonstrated that we can
reduce the size of the forbidden family to contain just four hypergraphs, bringing it closer to
Tuza’s conjecture which concerns single hypergraphs.

Saturation can also be generalised to edge-coloured graphs, a generalisation that was first
considered by Hanson and Toft [18] and studied further by Barrus, Ferrara, Vandenbussche and
Wenger [2] and Girão, Lewis, and Popielarz [13] for rainbow edge-colourings.

An edge-colouring of a graph is rainbow if every edge is assigned a distinct colour. An edge-
coloured graph G is H-rainbow saturated if it does not contain a rainbow copy of H, but the
addition of any non-edge in any colour creates a rainbow copy of H. The rainbow saturation
number of H, denoted by rsat(n,H), is then the minimum number of edges in an H-rainbow-
saturated edge-coloured graph on n vertices.

Girão, Lewis, and Popielarz [13] conjectured that, like the usual saturation number, the
rainbow saturation number of any non-empty graph H is at most linear in n. In collaboration
with Tom Johnston, Shoham Letzter, Natasha Morrison and Shannon Ogden, I have recently
proved this conjecture [6]. In addition, we also found an improved upper bound on the rainbow
saturation number of the complete graph, disproving a conjecture of Girão, Lewis, and Popielarz.
We are continuing to work on a related open problem on rainbow saturation for proper colourings

1.2 1-Factorizations of the Hypercube

A 1-factorization of a graph H is a partition of the edges of H into disjoint perfect match-
ings {M1,M2, . . . ,Mn}, also known as 1-factors. Let M = {M1,M2, . . . ,Mn} be such a 1-
factorization. We say that M is a perfect factorization if every pair Mi ∪Mj with i, j distinct
forms a Hamilton cycle. A 1-factorization M is called semi-perfect if M1∪Mi forms a Hamilton
cycle for all i ̸= 1.

The existence or non-existence of perfect 1-factorizations has been studied for various families
of graphs, with perhaps the most famous open problem in the area being Kotzig’s conjecture
which states that the complete graph K2n has a perfect 1-factorization. I focused on another
well-studied family of graphs: the hypercubes Qd.

Craft [1] conjectured that for every integer d ≥ 2 there is a semi-perfect 1-factorization of Qd.
This was proved independently by Gochev and Gotchev [14] and by Královič and Královič [22]
in the case where d is odd, and settled for d even by Chitra and Muthusamy [11]. Gochev and
Gotchev in fact went further and defined M to be k-semi-perfect if Mi ∪Mj forms a Hamilton
cycle for every 1 ≤ i ≤ k and k + 1 ≤ j ≤ d. They proved that there is a k-semi-perfect
factorization of Qd whenever k and d are both even with k < d.

It turns out there is no perfect 1-factorization of the hypercube, which is a corollary of a result
due to Laufer [23]. An analysis of Laufer’s proof reveals that a k-semi-perfect factorization is
the best we can hope for: the matchings must split into two classes with no two matchings
in the same class forming a Hamilton cycle. In light of this observation, the only remaining
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question is whether for any k and d there is a k-semi-perfect factorization of Qd. In my work [4]
I resolved the question almost completely, with only the case k = 3 and d = 6 left unresolved.

1.3 Subgraphs of Semi-random Graphs and Hypergraphs

The semi-random graph process is a single-player game that begins with an empty graph on n
vertices. In each round, a vertex u is presented to the player independently and uniformly at
random. The player then adaptively selects a vertex v and adds the edge uv to the graph. For
a fixed monotone graph property, the objective of the player is to force the graph to satisfy this
property with high probability in as few rounds as possible.

In collaboration with Marbach, Pra lat and Ruciński [8] I worked on this problem where
the player is aiming to construct a subgraph isomorphic to an arbitrary, fixed graph G. Let
ω = ω(n) be any function tending to infinity as n → ∞. Ben-Eliezer, Hefetz, Kronenberg,
Parczyk, Shikhelman and Stojakovič [10] proved that asymptotically almost surely one can
construct G in less than n(d−1)/dω rounds where d ≥ 2 is the degeneracy of G. It was also
proved that the result is sharp for G = Kd+1, that is, asymptotically almost surely it takes at
least n(d−1)/d/ω rounds to create Kd+1. Moreover, these authors conjectured that their general
upper bound is sharp for all graphs G.

We proved this conjecture [8]. Pra lat, Ruciński and I also have an ongoing project on a
natural generalization of the process to s-uniform hypergraphs, the semi-random hypergraph
process in which r ≥ 1 vertices are presented at random, and the player then selects s− r ≥ 1
vertices to form an edge of size s. Our results for graphs easily generalise to hypergraphs when
r = 1; the threshold for constructing a fixed s-uniform hypergraph G is, again, determined
by the degeneracy of G. However, when r ≥ 2; thresholds are not even known for complete
hypergraphs. We have general upper and lower bounds, and we can calculate the exact threshold
for some sparse hypergraphs. We are working on proving tightness for our upper bound, starting
with the case of complete hypergraphs.

1.4 Černý’s Conjecture

An automaton consists of a finite set of states – usually [n] – and a finite set of mappings, which
are functions from the set of states to itself. We are interested in the results of applying a
sequence of mappings to the set of states – we call such a sequence of mappings a word of the
automaton. We say that a word is a reset word if it sends every state to the same point, and
we call an automaton synchronizing if it has a reset word.

The most famous and long-standing open problem on synchronizing automata is Černý’s
conjecture.

Conjecture 1.1 (Černý’s Conjecture). Suppose an automaton on n states is synchronizing.
Then there exists a reset word of length at most (n− 1)2.

We considered the following question: what is the minimum m such for any synchronizing
automaton Ω on [n] there is some set of k states and a word w length at most m sending that
set to a singleton? We call this minimum the k-set rendezvous time, denoted by rdv(k, n). Note
that finding rdv(n, n) is equivalent to solving Černý’s conjecture. This question was studied
by Gonze and Jungers [15] in the special case k = 3. They proved that rdv(3, n) is bounded
below by n + 3 and bounded above by ≈ 0.1545n2 + O(n), using an approach based on linear
programming.

Robert Johnson and I [5] found a simple argument for general k almost halving the upper
bound on the minimum length of a word sending k states to a single state. We further improved
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the upper bound on the minimum length of a word sending 4 states to a singleton from 0.5n2

to ≈ 0.459n2, and the minimum length sending 5 states to a singleton from n2 to ≈ 0.798n2.
In contrast to the result of Gonze and Jungers [15], our methods are purely combinatorial in
nature. We are hopeful that the tools we used could be extended further and combined with
new ideas to give improved upper bounds on rdv(k, n) for k > 3. We conjectured that rdv(3, n)
is in fact linear in n. Any techniques involved in a proof of this conjecture may well generalise
to give improved bounds on the k-set rendezvous time rdv(k, n) and potentially rdv(n, n), the
Černý bound itself.

1.5 Probabilistic Zero Forcing

Zero forcing is a deterministic iterative graph colouring process in which vertices are coloured
either blue or white, and in every round, any blue vertices that have a single white neighbour
force these white vertices to become blue. Zero forcing was initially formulated to bound a
problem in linear algebra known as the min-rank problem [17]. In addition to this application
to mathematics, zero forcing also models many real-world propagation processes such as rumour
spreading. However, the deterministic nature of zero forcing may not fit the chaotic nature of
real-life situations and as such, probabilistic zero forcing has also been proposed and studied.
In probabilistic zero forcing, given a graph G, a set of blue vertices Z, and vertices u ∈ Z and
v ∈ V (G) \Z such that uv ∈ E(G), in a given time step, vertex u will force vertex v to become
blue with probability (|N [u] ∩ Z|) / deg(u), where N [u] is the closed neighbourhood of u.

With Trent Marbach and Pawe l Pra lat [7], I studied probabilistic zero forcing on hypercubes
and grids. We showed that the propagation time for the hypercube Qd is asymptotically almost
surely Θ(d), which is tight. The propagation time for the m×n grid is ≤ (1 + 10−7 +o(1))(m+
n)/2, which is very close to the lower bound (and conjectured true value) (1 + o(1))(m + n)/2.
The proof for the grids requires the introduction of a Markov chain and an analysis using
Chernoff–Heoffding bounds for Markov chains.

1.6 Common Pairs of Graphs

Ramsey’s Theorem says for a given graph H, we can find an integer N such that every red/blue
graph on ≥ N vertices contains a monochromatic H. The closely related Ramsey multiplcity
problem asks instead for the minimal number of monochromatic copies of H in a red/blue
edge-colouring of a large complete graph. Goodman [16] found the Ramsey multiplicity of the
triangle by proving that the number of monochromatic triangles is minimized by an unbiased
random edge colouring. Inspired by this, a graph H is called common if, like the triangle, the
number of monochromatic labelled copies of H in a red/blue edge colouring of a large complete
graph is asymptotically minimized by an unbiased random colouring.

Ramsey multiplicity and common graphs have been studied extensively following Goodman.
Erdős [12] conjectured that all complete graphs are common. This was disproved much later by
Thomason [25] who showed that K4 is not common. Moreover, Jagger, Šťov́ıček and Thoma-
son [19] extended this to show that any graph containing a copy of K4 is not common.

Natasha Morrison, Jonathan Noel and I extended this notion of commonness very naturally
to an asymmetric setting [9]. Take a pair of graphs H1 and H2. Suppose we wish to minimise c1
times the number of red copies of H1 plus c2 times the number of blue copies of H2 in a red/blue
edge colouring of a large complete graph. We say the pair is (p, 1 − p)-common if this count is
asymptotically minimised by a random red/blue colouring where edges are red with probability
p and blue with probability 1− p. It transpires that there is only one natural definition of what
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c1 and c2 should be in terms of p, e(H1) and e(H2).
We generalised many of the results on common graphs to this asymmetric setting, including

a proof that if H1 contains K4 then the pair (H1, H2) is not (p, 1 − p)-common for any p. In
addition, we obtain several novel results for common pairs of graphs with no natural analogue
in the symmetric setting. This work uses a wide range of techniques, including graph limits,
entropy methods (allowing us to take one (p, 1 − p)-common pair of graphs (F1, F2) and build
others) and flag algebras (to prove that (C4, C5) is (1/2, 1/2)-common and (1/3, 2/3)-common,
but not (.52, .48)-common – in particular, the set of p for which the pair is (p, 1 − p)-common
is something non-trivial).

There are many compelling open problems on this area, a dozen of which we state in our
paper. The following question is very natural and particularly intriguing.

Conjecture 1.2. Let H1 and H2 be graphs. The set {p ∈ (0, 1) : (H1, H2) is (p, 1−p)-common}
is always an interval.

One of our other conjectures related to the idea of strongly common graphs. We call a graph
H strongly common, if for any graphons W1 and W2 such that W1 + W2 = 1, we have

t(H,W1) + t(H,W2) ≥ t(K2,W1)e(H) + t(K2,W2)e(H).

Any graph that is Sidorenko is strongly common, and any strongly common graph is common.
Goodman’s work [16] shows that a triangle is strongly common. We proved that C5 is strongly
common and conjectured that all odd cycles are. This conjecture was proved very recently by
Kim and Lee [21] using the method of Schur convexity. We intend to further explore the use of
this valuable and new-to-us technique and to test the limits of what can be proved by using it
in conjunction with our other methods.

2 Future Collaboration

The mathematics department at Warwick University is one of the strongest in the world, and
I would particularly relish the opportunity to work with Richard Montgomery, who has myriad
exciting results in extremal combinatorics and graph factorizations in particular, including a
recent celebrated proof of Ringel’s long-standing conjecture. The research project ‘Spanning
Subgraphs in Graphs’ focuses on the two inter-related areas of spanning subgraphs in random
graphs and in coloured graphs, encompassing many fascinating combinatorial problems.

I have prior experience working on spanning subgraphs through my work on 1-factorizations.
Moreover, my recent research on finding the threshold for subgraph emergence in semi-random
graphs involved probabilistic tools commonly also used on purely random graphs, as well as
extra arguments to deal with the player strategy, and I have further familiarity with probabilistic
methods from my research into probabilistic zero-forcing.

In addition to Richard Montgomery, there are other researchers at Warwick university with
whom I share a number of interests, including Oleg Pikhurko, whose results on graph saturation
I built on directly in my own work, and whose expertise on dense graph limits and the associated
techniques would be invaluable for any continuing work on common pairs of graphs or other
similar projects. I would potentially be interested in taking advantage of the DIMAP program
to work with colleagues in the computer science department. Dmitry Chistikov and Marcin
Jurdzinski for example have experience working on problems related Černý’s conjecture, and I
would hope that by pooling our respective expertise we could make further progress towards
solving the conjecture.
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